## ARAB MATHEMATICS：O M A R AL－K H A YYAM

－A CUBE AND SIDES ARE EQUAL TO NUMBER—

授業者 MST．ZIAUN NAHAR （筑波大学大学院教育研究科教育研究科教科教育専攻数学教育コース）
(1) WHO I S OMAR

## NAME:-

Omar Ibn Ibrahim al Khayyam, Giyat-ed-din Abul Fath. He was born 1044 A.D. at NISHABUR in IRAN. He died 1123 A.D.


The name al-K hayyam in Arabic means the tentmaker. Omar himself never practiced this profession but it was the occupation of his father or one of his ancestors; hence the family name.

2 RUBAIYAT OF OMAR KHAYYAM
OMAR AS A BELOVED POET :-

He wrote " RUBAIAT OF OMAR KHAYYAM ", it is literary of poem.
It should beappreciated that it is practically impossible to exactly translate any literary work into another language, what to talk of poetry, especially when it involves mystical messages of deep complexity. Despite this, the popularity of the translation of RUBAIYAT would indicate the wealth of his rich thought.


## Original Arabic and translation



OMAR-AL-KHAYYAM could solve three degree equation from third and fourth term by using geometrical shape, and this is the highest peak (top) reached by ARAB's in al gebra and it is higher than what some mathematician have reached now-a-days, because still now we can not solve equations from fifth degree or higher by a common way. Gregory had praised Omar -al-Khayyam, and said, "sol ving cubic equations by using geometrical representation, was one of the greatest achievements of ARAB scientists".

A CUBE AND SIDES ARE EQUAL TO A NUMBER
3-1 PROPOS I T I ON 14 (Book 2)
PROPOSITION 14. PROBLEM
To describe a square that shall be equal to a given rectilineal figure.
Let $A$ be the given rectilineal figure: it is required to describe a square that shall be equal to $A$.
Describe the rectangular parallelogram $B C D E$ equal to the rectilineal figure $A$. [I. 45. Then if the sides of it, $B E, E D$, are equal to one another, it is a square, and what was
 required is now done.

But if they are not equal, produce one of them $B E$ to $F$, make $E F$ equal to
$E D$,
and bisect

$G ; \quad$| $[I .3$. |
| :--- |
| $G F$ |
| from at |
| [I. 10. |

the centre from the centre $G$, at the distance $G B$, or $G F$, describe the semicircle $B H F$,
 $\stackrel{r}{H}$.
The square described on $E H$ shall be equal to the given rectilineal figure $A$.
Join $G H$. Then, because the straight line $B F$ is divided into two equal parts at the point $G$, and into two unequal parts at the point $E$, the rectangle $B E, E F$, together with the square on $G E$, is equal to the square on $G F$. [II. 5 .
But $G F$ is equal to $G H$.
Therefore the rectangle $B E, E F$, together with the square on $G E$, is equal to the square on $G H$.
But the square on $G H$ is equal to the squares on $G E, E H$; [I. 47. therefore the rectangle $B E, E F$, together with the square on $G E$, is equal to the squares on $G E, E H$.
Take away the square on $G E$, which is common to both; therefore the rectangle $B E, E F$ is equal to the square on EH. [Axiom 3. But the rectangle contained by $B E, E F$ is the parallelogram $B D$.
because $E F$ is equal to $E D$.
[Construction.
Therefore $B D$ is equal to the square on $E H$.
But $B D$ is equal to the rectilineal figure $A$. [Construction. Therefore the square on $E H$ is equal to the rectilineal figure $A$.

Wherefore a square has been made equal to the given rectilineal figure $A$, namely, the square described on EH. Q.E.R

## 14

与えられた直線図形に等しい正方形をつくること。

与えられた直線図形を $A$ とせよ。このとき直線図形 $A$ に等しい正方形をつくらね ばならぬ。


直線図形 $A$ に等しい直角平行四辺形 $B \Delta$ がつくられたとせよ。そうすればもし $B E$ が $E \Delta$ に等しければ，命じられたことはなされたことになるであろら。なぜなら正方形 $B A$ が直線図形 $A$ に等しくつくられたから。もし等しくなければ，$B E, E \Delta$ の一方が大きい。 $B E$ が大き いとし，$B E$ が $Z$ まで延長され，$E Z$ が $E \Delta$ に等しくされ，$B Z$ が $H$ で 2 等分され，$H$ を中心とし，$H B, H Z$ の一を半径として半円 $B \theta Z$ が描かれ，$\Delta E$ が $\Theta$ まで延長され，$H \theta$ が結ばれたとせよ。

そうすれば線分 $B Z$ は $H$ において等しい部分に，$E$ において不等な部分に分けられたか ら，$B E, E Z$ にかこまれた矩形と $E H$ 上の正方形との和は $H Z$ 上の正方形に等しい。そし て $H Z$ は $H \theta$ に等しい。それゅえ矩形 $B E, E Z$ と $H E$ 上の正方形との和は $H \Theta$ 上の正方形に等しい。ところが $\theta E, E H$ 上の正方形の和は $H \Theta$ 上の正方形に等しい。ゆえに矩形 $B E, E Z$ と $H E$ 上の正方形との和は $\theta E, E H$ 上の正方形の和に等しい。双方から $H E$ 上 の正方形がひかれたとせよ。そうすれば残りの $B E, E Z$ にかこまれた矩形は $E \Theta$ 上の正方形 に等しい。ところが $E Z$ は $E \Delta$ に等しいから，矩形 $B E, E Z$ は $B \Delta$ である。それゆえ平行四辺形 $B 4$ は $\theta E$ 上の正方形に等しい。そして $B A$ は直線図形 $A$ に等しい。ゆえに直線図形 $A$ も $E \Theta$ 上に描かれた正方形に等しい。

よって与えられた直線図形 $A$ に等しい正方形，すなわち $E \theta$ 上に描かれらる正方形がつく られた。これが作図すべきものであった＊）

3-3 A CUBE AND SIDES ARE EQUAL TO NUMBER
How To Solve The Problem Of OmarKhayyaam
I. The first species. A cube and sides are equal to a number. ${ }^{1}$


Fig. 17
Let the line $A B$ (Fig. 17) be the side of a square equal to the given number of roots. ${ }^{2}$ Construct a solid whose base is equal to the square on $A B$, equal in volume to the given number. The construction has been shown previously. ${ }^{3}$ Let $B C$ be the height of the solid. Let $B C$ be perpendicular to $A B$. You know already what meaning is applied in this discussion to the phrase solid number. It is a solid whose base is the square of unity and whose height is equal to the given number; that is, the height is a line whose ratio to the side of the base of the solid is as the ratio of the given number to one. Produce $A B$ to $Z$ and construct a parabola whose vertex is the point $B$, axis $B Z$, and parameter $A B$. Then the position of the conic $H B D$ will be known, as has been shown previously and it will be tangent to $B C$. Describe on $B C$ a semicircle. It necessarily intersects the conic. Let the point of intersection be $D$; drop from $\nu$, whose position is known, two pērpendiculars $D Z$ and $D E$ on $B Z$ and $B C$. Both the position and the magnitude of these lines are known. The line $D Z$ is an ordinate of the conic. Its square is then equal to the product of $B Z$ and $A B .{ }^{5}$ Consequently, $A B$ to $D Z$, which is equal to $B E$, is as $B E$ to $E D$, which is equal to $Z B .^{6}$ But $B E$ to $E D$ is as $E D$ to $E C$. ${ }^{7}$ The four lines then are in continuous proportion, $A B, B E, E D, E C,{ }^{8}$ and consequently the square of the parameter $A B$, the first, is to the square of $B E$, the second, as $B E$, the second, is to $E C$, the fourth. ${ }^{9}$ The solid whose base is the square $A B$ and whose height is $E C$ is equal to the cube $B E$, because the heights of these figures are reciprocally equal to their bases. ${ }^{10}$ Let the solid whose base is the square of $A B$ and height is $E B$ be added to both. ${ }^{11}$ The cube $B E$ plus the solid then is equal to the solid whose Base is the square $A B$ and whose height is $B C$, which solid we have assumed to be equal to the given number. But the solid whose base is the square of $A B$, which is equal to the number of roots, and whose height is $E B$, which is the side of the cube, is equal to the number of the given sides of the cube $E B$. The cube $E B$, then, plus the number of its given sides is equal to the given number, which was required.

This species does not present varieties of cases or impossible problems. It has been solved by means of the properties of the circle combined with those of the parabola.

